Advanced 21-cm Cosmology Workshop, Dec 18th-21th 2023, NISER Bhubaneswar

Extracting the HI 21 cm Signal from the Ground Based Observation using ANN

Anshuman Tripathi Department of Astronomy, Astrophysics and Space Engineering Indian Institute of Technology, Indore (IITI)

Collaborators: Abhirup Datta (IITI), Aishrila Mazumder (Univ. of Manchester), Madhurima Choudhury (Brown University, USA), Suman Majumdar (IITI)

Credits : SKAO

21CM Cosmology: Observational Challenges

• Galactic and Extragalactic Foreground

Mostly due to synchrotron radiation with expected smooth spectrum.

$$\ln T_{\text{FG}} = \sum_{i=0}^{n} a_{i} [\ln (\nu / \nu_{0})]^{i}$$

• Earth's lonosphere

- The ionosphere refracts all trans-ionospheric signals (radio wave), including Galactic and Extragalactic foregrounds, attenuates any trans-ionospheric signal, and emits thermal radiation.
- In E. Shen et al. 2022, it is demonstrated that, under turbulent ionospheric conditions, an error exceeding 5 percent in our understanding of the ionospheric parameters could result in false or null detection.
- Radio Frequency Interference (RFI)
 - Other Systematics effects

Fig : Schematic representation of the ionosphere showing the F- and D- layers (not scaled), which show the refraction. (Datta et al. 2016)

21CM GLOBAL SIGNAL: Effect of Ionosphere

A MODEL PARAMETERIZED 21CM GLOBAL SIGNAL

Parameters evolve according to a tanh model

J(z): Lyman-alpha background (which determines the strength of WF coupling)

Xi(z): Ionized fraction of hydrogen.

T(z): Temperature of the (Intergalactic Medium) IGM

$$J(z) = \frac{J_{ref}}{2} \left(1 + tanh \frac{(J_{z0} - z)}{J_{dz}} \right)$$
$$\bar{X}(z) = \frac{X_{ref}}{2} \left(1 + tanh \frac{(X_{z0} - z)}{X_{dz}} \right)$$
$$T(z) = \frac{T_{ref}}{2} \left(1 + tanh \frac{(T_{z0} - z)}{T_{dz}} \right)$$

We use the Accelerated Reionization Era Simulations (ARES) code was designed to rapidly generate models for the global 21- cm signal. (Mirocha et al, 2012, 2015).

Tripathi A. et al. (2023, Submitted to MNRAS, Under review)

Test Data Sets & Model Prediction

For the test data sets we added thermal noise (n) which corresponds to the observation time (N_t) :-

$$T_{test} = T_{21} + T_{FG}$$
 + Ionospheric effects + Thermal noise

Thermal Noise : $n(\nu) = \frac{T_{\rm FG}(\nu)}{\sqrt{\Delta \nu \cdot 10^6 \cdot 3600 \cdot N_t}}$ **Observation Time** R2 Score RMSE Parameters Parameters R2 Score RMSE 0.9614 0.0628 Jref 0.9738 J_{z0} 0.0605 0.9778 0.0440 J_{ref} X_{z0} 0.9713 0.0616 J_{z0} 0.9780 0.0438 T_{z0} 0.9668 0.0577 X_{z0} **ANN Predictions** 0.9760 0.0453 J_{dz} 0.9634 0.0608 T_{z0} 0.9746 0.0470 X_{dz} 0.9578 0.0658 J_{dz} 0.9735 0.0482 T_{dz} 0.9595 0.0636 X_{dz} 0.9848 0.0467 0.9810 0.0439 a_0 T_{dz} 0.9781 0.0434 0.9655 0.0590 a_1 0.9936 0.0232 a_0 0.9586 0.0642 a_2 0.9738 0.0477 a_1 0.9610 0.0625 az 0.9773 0.0443 TEC0.9658 0.0578 a_2 0.9774 0.0445 T_e 0.9728 0.0588 az **Signal + Foreground** Signal + Foreground +ionospheric effects Tripathi A. et al. (2023, Submitted to MNRAS, Under review)

6

Signals generated with a Physical Model

For producing the 21cm global signal they followed the seminumerical code which can easily produced global signal for the redshift range 5 < z < 30. (Chatterjee et al. 2019)

Input parameters

- $f\ast\,:\,$ Star formation efficiency.
- f_{esc} : Escape fraction of ionizing photon.
- f_{R} : Efficiency of the radio background.
- $f_{xh}^* f_x$: X-ray heating efficiency.
- N_{α} : Number of Ly α photons.

Model Prediction

Signal + Foreground

Parameters	R2 Score	RMSE
$f_{xh} * f_x$	0.9813	0.0428
fstar	0.9731	0.0476
fesc	0.9772	0.0453
Na	0.9607	0.0562
<i>a</i> ₀	0.9752	0.0473
a1	0.9964	0.0107
a2	0.9739	0.0433
az	0.9736	0.0481

Signal + Foreground + ionospheric effects

Parameters	R2 Score	RMSE
$f_{xh} * f_x$	0.9804	0.0411
fstar	0.9704	0.0488
fesc	0.9751	0.0475
Na	0.9620	0.0508
<i>a</i> ₀	0.9981	0.0442
<i>a</i> ₁	0.9990	0.0094
a2	0.9793	0.0420
a3	0.9733	0.0445
TEC	0.9733	0.0480
Te	0.9742	0.0473

Conclusion: Simple ANN is robust in 21cm signal parameter estimates in presence of slowly varying ionosphere

21CM Power Spectrum - Signal Parameter Estimation

• In A. Mazumder et al. 2022, they have developed the end to end pipeline to simulate interferometric observation.

Tripathi A et al. (2023, in prep)

Synthetic Observation

Observational input parameters

Parameter	Value
Central Frequency	142 MHz (z~9)
Bandwidth	8 MHz
Number of frequency channels	64
Field of view	4°
Number of array elements:	
SKA1-Low Core	296
Maximum baseline (m):	2000
Synthesised beam (arcmin):	2.5

Fig : Telescope layouts used in the synthetic observation.

Simulated Observation

(Jy/beam) x 10⁻⁶

J2000 Declination

HI 21-cm Lightcone's slice at 142 MHz (z≈9) with different astrophysical conditions

14

Training Data sets

1e-6

Tripathi A et al. (2023, in prep)

Fig: 300 datasets of the HI Power spectrums for the training.

1.0

Model Prediction

• We tested our trained ANN model with 30 sample of test datasets.

RMSE of Mean free path (R_{mfp})= 0.310

RMSE of ionizing Efficiency (T_{vir})=0.0609

RMSE of ionizing Efficiency (ζ)= 0.1460

Model Prediction

• We tested our trained ANN model with 30 sample of test datasets.

RMSE of Mean free path (\mathbf{R}_{mfp}) = 0.310

RMSE of ionizing Efficiency $(T_{vir}) = 0.0609$

RMSE of ionizing Efficiency (ζ)= 0.1460

- Probably the astrophysical parameter R_{mfp} is highly degenerate.
- To break the degeneracy, we required more training data sets and a more sophisticated ML model.

Emulating Power Spectrum using ANN

18

Observed Power Spectrum

Predicted by Observational Model (SKA Low)

Tripathi A. et al. (2023, in prep)

Ongoing/Future Work

GLOBAL 21 CM SIGNAL EXTRACTION

- ANN signal extraction is robust against slowly varying Ionosphere.
- Future work to include more dynamic ionosphere along with chromatic telescope beam.

21CM FLUCTUATIONS - POWER SPECTRA

- Inherent bias in the 21cm power spectra due to the effect of the PSF of an radio interferometer
- This pipeline can be extended to study effects of chromatic primary beam, radio frequency interferences, foregrounds with spectral features.

Thank you.

Basic Overview of Artificial Neural Network (ANN)

Each connection associated with a bias and weight.

Neurons

Input laver

w

Hidden layer

 w_{kj}

Back-propagation of errors

Feed-forward process

(Image courtesy: M. Choudhury et. al. 2019)

The complex gain can be modeled by

$$g_i = (a_i + \delta a_i)exp(-i(\phi_i + \delta \phi_i))$$

$$g_i = (1 + \delta a_i) exp(-\delta \phi_i)$$

Observed Power Spectrum with Different Interferometers

Tripathi A. et al. (2023, in prep)

Timeline and Progress

29