Constraints on Dark Matter - Neutrino interaction from 21 cm Cosmology

Antara Dey

Physics and Applied Mathematics Unit Indian Statistical Institute, Kolkata

December 21, 2023

(Based on MNRAS 524, 100-107, (2023) & MNRAS 527, 790-802, (2024) in collaboration with Dr. Arnab Paul and Prof. Supratik Pal) Advanced 21 cm Cosmology Workshop, NISER Bhubaneswar, 2023

Antara Dey (ISI)

Constraints on Dark Matter - Neutrino interaction fr

December 21, 2023

1/26

- Introduction
- 2 DM- ν interaction model
- Effects on CMB
- **9** Constraints on DM- ν interaction from Reionization Era
- **(**) Constraints on DM- ν interaction on Post-Reionization Epoch
- Summary

- Vanilla ACDM model of cosmology has so far been well established in the light of cosmological observables ... Apart from some tensions like Hubble tension
 - DM is assumed to be non-relativistic and non-interacting with other species
- However particle models of DM often require DM to interact with SM particles ... For example DM-baryon interaction in freeze-out mechanism
- Another interesting possibility is $DM-\nu$ interaction
 - Useful for thermal production of MeV scale DM (Berlin & Blinov, 2017)
 - Difficult to probe such interactions with terrestial experiments
 - Cosmological perturbations may have imprint of such interactions .. Possibility to constrain such interaction via CMB PS and Matter PS

• Modified Perturbation equation:

Evolution of density contrast and velocity divergence of DM and ν ,

$$\begin{split} \dot{\delta}_{\nu} &= -\frac{4}{3}\theta_{\nu} + 4\dot{\phi} \\ \dot{\theta}_{\nu} &= k^{2}\Psi + k^{2}(\frac{1}{4}\delta_{\nu} - \sigma_{\nu}) - \dot{\mu}(\theta_{\nu} - \theta_{DM}) \\ \dot{\delta}_{DM} &= -\theta_{DM} + 3\dot{\phi} \\ \dot{\theta}_{DM} &= k^{2}\Psi - \mathcal{H}\theta_{DM} - S^{-1}\dot{\mu}(\theta_{DM} - \theta_{\nu}) \\ \text{where } \dot{\mu} &\equiv a\sigma_{DM-\nu}cn_{DM}, S \equiv 3/4\rho_{DM}/\rho_{\nu} \end{split}$$

• Interaction parameter:

$$u \equiv \frac{\sigma_{DM-\nu}}{\sigma_{TH}} [\frac{m_{DM}}{100 \, Gev}]^{-1}$$

• δ_{ν} , θ_{ν} and δ_{DM} , θ_{DM} are coupled through Drag terms alongside gravity (θ , ϕ)

Model Parameters

$$\omega_{b}, \omega_{cdm}, 100 * heta_{s}, \textit{In}10^{10}\textit{A}_{s}, \textit{n}_{s}, au_{reion}, \textit{u}, \textit{M}_{tot} = 0$$

The effect of DM- ν scattering on CMB TT PS and Matter PS. (Generated fi modified version of CLASS) Posterior distribution of $\Lambda CDM + u$ using Planck 2018 high-I TTTEEE, low-I TT, low-I EE, lensing data set (Mosbech et al. 2021, JCAP03(2021)066, Paul et al. 2021)

Constraints on Dark Matter - ν interaction model from Reionization Epoch (MNRAS 524, 100-107, (2023))

Semi-numerical Simulation

- N-body Simulation: Particle Mesh Code (Bharadwaj and Srikant 2004, Mondal et al. 2015)
 - Grid= 2144^3
 - Volume= 150.0 *Mpc*³
 - Resolution= 0.07 Mpc
 - Number of Particles= 1072³

2. Halo finder: Friends of Friends algorithm (Mondal et al. 2015)

•
$$M_{min} = 1.9 \times 10^9 M_{\odot}$$

3. Reionization: ReionYuga code (Choudhury et al. 2009, Majumdar et al. 2014, Mondal et al. 2017)

$$N_{ion} = 23.21 \text{ for } \wedge CDM$$

$$R_{mfp}$$
=20 Mpc

Constraints

1. Ionization Criteria

J. Astrophys. Astr. (2016) 37:29

- mean and 2σ limits on Q_{HII} and x_{HI} from Planck data
- Models with *x_{HI}* lying in shaded region will satisfy Reionization condition

$x_{HI} = 0.5$ at z=8.0: 50% Ionization Criteria

2. N_{ion} for Pop // stars

$$N_{ion} = 8 \frac{N_{ion}^b}{4000} \frac{M_b/M_{halo}}{1/5} \frac{f_*}{10\%} \frac{f_{esc}}{10\%}$$

- *N*^b_{ion}: number of ionizing photons per baryons, *M*_b/*M*_{halo}: baryonic mass fraction
- *f*_{*}, *f*_{esc}: metalicity, initial mass function: uncertain parameters

Pop // stars $N_{ion} < 500$ (Conservative limit) MNRAS. 459 (July, 2016), 2342-2353

Our Workplan

- Generate linear Matter PS for different interaction strength u
- Put linear Matter PS as input to the N-body code
- **(a)** Run N-body, FoF, Reion-Yuga code and varies N_{ion} from 23 to 500 to achieve $x_{HI} = 0.5$ at z=8.0

1. HI map at z=8.0

u = 0.0 (ACDM), $N_{ion} = 24$

$$= 8.8 \times 10^{-8}$$
, $N_{ion} = 300$ u

$$\mu = 6.6 \times 10^{-7}$$
, $N_{ion} = 500$

- Increasing 'u' delays ionization
- To achieve $x_{HI} = 0.5$, N_{ion} must be increased

Ш

From Reionization physics we get more tighter constrain on u; $u < 6.6 \times 10^{-7}$

Antara Dey (ISI)

Constraints on Dark Matter - Neutrino interaction fr

2. Comparison of Signal with Noise PS for SKA1-LOW Telescope

• Signal to Noise Ratio: $SNR \approx 5$

- Signal is much higher than the Noise Power Spectra for 0.1 < k < 2.0
- Possibility to detect the Signal from the SKA1-LOW observation

Mini Summary

- 21 cm observation improves the constrain on DM- ν interaction by few orders of magnitude in Conservative limit.
- **4** *HI* map confirms the presence of non-trivial interaction.
- **(a)** High SNR implies a possibility to detect the signal.

- Perturbation equations for Dark Matter is same for DM-massless ν case.
- It solves the full Boltzmann hierarchy for massive neutrinos.
- We consider degenerate case of massive neutrinos.
- Interaction parameter:

$$u \equiv \frac{\sigma_{DM-\nu}}{\sigma_{TH}} [\frac{m_{DM}}{100 \, Gev}]^{-1}$$

• Planck 2018 data $u < 3.97 imes 10^{-4}$ (Mosbech et al. 2021, JCAP03(2021)066)

Model Parameters

 $\omega_b, \omega_{cdm}, 100 * \theta_s, In 10^{10} A_s, n_s, \tau_{reion}, u, M_{total}$

Our Workplan

- Generate the Mock Catalogues for upcoming 21 missions SKA-Mid in Post-reionization era, future Galaxy Surveys and Cosmic Shear Surveys Euclid and DESI
- Q Run the Fisher matrix forecast Analysis for 6 + 2 model parameters using upcoming missions
- **②** Perform the MCMC analysis using the mock data for the future missions and check the possible 1σ bounds on the model parameters

Observations

1. 21-cm Intensity Mapping Observations

Noise Power Spectrum

$$P_{
m N}^2 = T_{
m sys}^2 rac{4\pi f_{
m sky} r^2(z)(1+z)^2}{2H(z)t_{
m tot}
u_0 N_{
m dish}}$$

Bias Parameter

$$b_{21}(z) = b_0^{IM} (0.904 + 0.135(1 + z)^{1.696b_1^{IM}})$$

SKA Intensity Mapping specifications

Parameter	$ u_{\rm min}({ m MHz}) $	$ u_{max}(\mathrm{MHz}) $	z_{\min}	$z_{\rm max}$	$\delta_{\nu}(\text{kHz})$	$T_{\rm inst}({ m K})$
SKA1 Band 1	400 (350)	1000 (1050)	0.45	2.65	10.9	23
SKA1 Band 2	1000 (950)	1421 (1760)	0.05	0.45	12.7	15.5

2. Galaxy Clustering Observations

Bias Parameter

 $b_g(z) = b_0(1+z)^{0.5b_1}$

SKA Galaxy Clustering specifications

Parameter	$\nu_{\rm min}[{ m MHz}]$	$\nu_{\rm max}[{ m MHz}]$	z_{\min}	<i>z</i> _{max}	$S_{ m area}[m deg^2]$	$\delta_{\nu}[\text{KHz}]$	B[km]
SKA1	950	1760	0.00	0.5	5000	12.7	150 (5
SKA2	470	1290	0.10	2.0	30,000	12.8	3000 (5

3.Cosmic Shear Observations

Cosmic shear power spectrum of multipole *I* at redshift bins $\{i, j\}$

$$C_{ij}^{l} = \frac{9}{16} \Omega_m^2 H_0^4 \int_0^\infty \frac{\mathrm{dr}}{r^2} g_i(r) g_j(r) P\left(k = \frac{l}{r}, z(r)\right)$$

Cosmic Shear specifications for SKA and Euclid

Experiments	$f_{ m sky}$	$n_{\rm gal}({\rm arcmin}^{-2})$	Zm	α	β	γ	$f_{ m spec-z}$	$Z_{\rm spec-max}$
SKA1	0.1212	2.7	1.1	$\sqrt{2}$	2	1.25	0.15	0.6
SKA2	0.7272	10	1.3	$\sqrt{2}$	2	1.25	0.5	2.0
Euclid	0.3636	30	0.9	$\sqrt{2}$	2	1.5	0.0	0.0

Antara Dey (ISI)

Future Missions SKA2, CMB-S4 + Euclid + SKA Intensity Mapping 2 will put tighter constraints on $\sigma(u) < 10^{-8}$

1σ uncertainties on mass of neutrinos M_{tot}

Future Missions SKA2, CMB-S4 + Euclid + SKA Intensity Mapping 2 will put tighter constraints on $\sigma(M_{tot}) \approx 0.006 eV$

Mini Summary

- Forthcoming missions SKA2, Euclid, next generation CMB missions CMB-S4 will put tighter constraints on the DM- ν interaction parameter u.
- **9** Future missions will also measure sum of neutrino mass M_{tot} more robustly.
- **(a)** Next generation missions may put some light on the H_0 , σ_8 tensions.

Conclusions and Future Directions

- Future 21 cm missions hold important promise in improving the constraints on DMν interaction parameter by few orders of magnitude in Reionization era as well as in Post-Reionization era.
- Opcoming missions will precisely determine the sum of neutrino mass.
- High SNR implies a possibility to detect the signal in the Reionization Epoch using SKA1-Low telescope.
- In the upcoming decade, future missions like SKA, Euclid, CMB-S4 will provide significant insight into the cosmological history.
- Once realistic foreground models and noise elimination techniques can be incorporated in order to detect the signal.

Thank You

Basics of Cosmological Perturbation Theory (Theory behind CMB and Matter PS)

• Perturbed energy-momentum conservation equation (for free species):

$$\begin{split} \dot{\delta} &= -(1+w)(\theta - 3\dot{\phi}) - 3\frac{\dot{a}}{a}(\frac{\delta P}{\delta \rho} - w)\delta,\\ \dot{\theta} &= \frac{\dot{a}}{a}(1+w)\theta - \frac{\dot{w}}{1+w}\theta + \frac{\delta P/\delta \rho}{1+w}k^2\delta - k^2\sigma + k^2\psi. \end{split}$$

• Observable CMB PS: Line-of-sight integral (in real space in one direction)

$$(\Theta + \psi)|_{obs} = \int_{\eta_{ini}}^{\eta_0} \mathrm{d}\eta g[(\theta_0 + \psi + n.v_B) + exp^{-\tau}(\dot{\phi} + \dot{\psi})]$$

- Temperature fluctuation at last scattering surface + Energy loss for getting out of potential well
- Doppler effect
- Sachs-Wolfe effect (Early + Late)
- Observable Matter PS:

$$P(k) \propto \delta(k)^2$$

Dark Matter density fluctuation

Features in CMB TT, EE, TE PS and Matter PS

- An increase in the magnitude of the peaks and a slight shift to larger I with respect to vanilla ACDM model
- Suppression of Power at small scales (large k)
- Oscillatory behaviour in non-linear regime k≥0.2
- In standard ΛCDM,

$$\delta_{DM} = C_1 \log(k\eta) + C_2$$

whereas for interacting DM- ν ,

$$\delta_{DM} \sim \frac{S_{-1}\dot{\mu}}{H} \frac{\sin(k\eta)/\sqrt{3}}{k\eta/\sqrt{3}} exp^{\frac{-2k^2\eta}{15\dot{\mu}}}$$

The term $exp^{\frac{-2k^2\eta}{15\dot{\mu}}}$ leads to suppression at large k
The term $\frac{\sin(k\eta)/\sqrt{3}}{k\eta/\sqrt{3}}$ leads to oscilatory behaviour

5 6

Fisher Forecast Analysis

Fisher Matrix analysis:

$$F_{\alpha\beta} = \sum_{ij} \left(\frac{\partial \bar{P}(k_i)}{\partial q_{\alpha}} [C^{-1}]_{ij} \frac{\partial \bar{P}(k_j)}{\partial q_{\beta}} \right)$$

 1σ error ellipse of u and $\textit{N}_{\textit{ion}}$

- Negative correlation between *u* and *M_{min}*
- Positive correlation between *u* and *N*_{ion}
- No correlation between u and R_{mfp}