Probing the signatures of astrophysical scatter in the EoR 21cm signal using auto-bispectrum

Chandra Shekhar Murmu (IIT Indore) Collaborators: Kanan K. Datta (Jadavpur University), Suman Majumdar (IIT Indore), Thomas R. Greve (Cosmic Dawn Center)

The Epoch of Reionization (EoR)

Credit: NAOJ

The Epoch of Reionization (EoR)

Credit: NAOJ

How to probe the EoR universe?

Probing the EoR: galaxies

Challenges!

- Demanding sensitivity limits
- Demanding resolutions
- Expensive to operate, therefore it becomes impractical to map large galaxy samples

Probing the EoR with Intensity Mapping: galaxies and IGM

Observable summary statistics

Modeling (analytical/numerical) of observable summary statistics (e.g. power spectrum) is essential to interpret observations

[C II]_{158µm} line-luminosity scatter

 $[C II]_{158\mu m}$ line-emission exhibits scatter with respect to the host halo mass of the galaxy

Arises due to the multi-phase state of the ISM

[C II]_{158µm} line-luminosity scatter

 $[C II]_{158\mu m}$ line-emission exhibits scatter with respect to the host halo mass of the galaxy

Arises due to the multi-phase state of the ISM

This is expected to impact the observable summary statistic

Impact of line-luminosity scatter on the power spectrum

The non-uniform scatter impacts the power spectrum regardless of the fit used for comparison

When compared against the most-probable fit, this impact can be modelled robustly, unlike the mean fit

[H I]_{21cm} bispectrum

Similar astrophysical scatter in the star-formation rates of the galaxies can leave imprints in the IGM (i.e. [H I]_{21cm} signal)

Simulations of the [H I]_{21cm} signal

We generate 50 realizations of the [H I]_{21cm} signal introducing log-normal scatter in star-formation rates

The bispectrum is averaged over all the realizations

The impact of the scatter is estimated as:

 $\langle \Delta B
angle / B_{
m no\ scatter}$

The statistical significance is estimated as:

 $\langle \Delta B
angle / \sigma_{\Delta B}$

Impact of scatter on the [H I]_{21cm} bispectrum

Statistical significance

2.55

4.31

0.525 625 725 825 925

cosθ

cosθ

Impact of scatter on the $[H I]_{21cm}$ bispectrum

cosθ

cosθ

Impact k_1 [Mpc⁻¹] 0.89 1.50 2.55 0.180.31 0.53 4.31 ≈ 0.95 1 0.825 ¥/≈ 0.725 $\overline{\mathbf{X}}_{HI}$ 0.625 0.90 0.925 r 0.825 */* */* 11 10.0 $\overline{\mathbf{X}}_{HI}$ 0.625 0.52 -5.0 ≈ 0.81 0.925 1 0.825 × 0.725 2.0 XHI 0.625 0.52 1.0 ≈ 0.72 0.92 1 0.825 × 0.725 0.5 XHI 0.625 0.52 0.2 0.62 0.925 1 0.825 × 0.725 L_{0.1} 22 XHI 0.625 0.52 ≈ 0.53 0.925 ¥ 0.825 ¥ 0.725 XH 0.625 0.525 0.525625725825925 0.525625725825925 ⁰525625725825925 ⁰525625725825925 ⁰525625725825925 0.525625725825925 ,525,625,725,825,925

cosθ

 $\cos\theta$

cosθ

cosθ

cosθ

Statistical significance

Murmu et al. 2023, arXiv: 2311.17062

Small-scale ionized bubbles

The small-scale ionized bubbles vary across different realizations of the astrophysical scatter

Detectability

The imprints of astrophysical scatter is **not detectable** in the bispectrum using 1000 hours of SKA1-Low observations

What can be done further?

- Incorporate density dependent recombination
- Other sources of reionization can be included (e.g. Uniform ionizing background)

