# Probing the states of the IGM during the Epoch of Reionization

Raghunath Ghara

NISER, 21cm Cosmology Dec, 2023





### Happening Finally!!





| Activity                                | SKA-LOW  |                          | SKA-MID  |                     |
|-----------------------------------------|----------|--------------------------|----------|---------------------|
|                                         | Date     | Number<br>of<br>stations | Date     | Number<br>of dishes |
| Start of Construction                   | Jul 2021 |                          | Jul 2021 |                     |
| Start of major contracts                | Aug 2021 |                          | Aug 2021 |                     |
| Finish of Array Assembly 0.5<br>(AA0.5) | Feb 2024 | 6                        | Mar 2024 | 4                   |
| Finish of AA1                           | Feb 2025 | 18                       | Feb 2025 | 8                   |
| Finish of AA2                           | Feb 2026 | 64                       | Dec 2025 | 64                  |
| Finish of AA*                           | Feb 2027 | 307                      | Jun 2026 | 144                 |
| Finish of AA4                           | Nov 2027 | 512                      | Jun 2027 | 197                 |



### SKA first target: EoR 21-cm signal power spectrum

Perhaps, SKA will also start with a upper limit measurement like LOFAR, HERA, MWA, etc.



4

### Inference: Source properties



# Inference framework

Ghara+2020, MNRAS, 493, 4, 4728 (1<sup>st</sup> **LOFAR** interpretation paper) Ghara+2021, MNRAS, 503, 3, 4551 (MWA interpretation paper)



10<sup>3</sup>

0.1

0.2

 $k [h c M p c^{-1}]$ 

0.3

0.4

0.5

### Inference about the EoR sources

> Posterior distribution of excluded models, (Uniform  $T_s$ )



### Inference: Properties of the IGM



IGM properties

- Fraction of the ionized regions
- Fraction of emission regions
- > Mean Gas temperature
- Morphology of the ionized/emission regions

### **Complex morphology: percolation**





LCS: largest cluster statistics=volume fraction of the largest ionized region

### **Quantifying morphology**



#### Mean free path method (Mesinger+2007)

shoots large number of rays around randomly selected points inside the emission (or absorption) regions in random directions and record the lengths of the rays until those reach the edge of the regions.

#### Granulometry method (Kakiichi+2017)

based on based Minkowski subtraction and addition steps to estimate the PDFs (applying spherical filters). Sensitive to the smallest dimension of a complex-shaped region.

#### Friends-of-friends ( Iliev+2006)

considers two neighbouring cells in the binary fields with values larger than 0.5 to be the part of the same region and in the process finds the volume of each region.

# IGM inference framework

Ghara+2020, MNRAS, 493, 4, 4728 (1<sup>st</sup> LOFAR interpretation paper) Ghara+2021, MNRAS, 503, 3, 4551 (MWA interpretation paper)



#### Posterior distribution of excluded models

Constraints on IGM at z=9.1 From LOFAR upper limits



# IGM inference framework

Ghara+2020, MNRAS, 493, 4, 4728 (1<sup>st</sup> LOFAR interpretation paper) Ghara+2021, MNRAS, 503, 3, 4551 (MWA interpretation paper)



### Source free Model for EoR PS



### An alternative approach to probe the EoR IGM



### An alternative approach to probe the EoR IGM



| $z_0$ Redshift corresponds to $\overline{x}_{\rm HI} = 0.5$                                                                                                                                                                                  |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $\Delta z$ Redshift range of reionization in a $tanh$ reionization model.                                                                                                                                                                    |     |
| $\alpha_0$ Asymmetry parameter in the redshift evolution of $\overline{x}_{\rm HI}$ around $\overline{x}_{\rm HI} = 0.5$ .                                                                                                                   |     |
| $A_{\star}$ Maximum value of the ratio of $\delta T_{\rm b}$ and density power spectra at $k = 0.05 \ h \ {\rm Mpc}^{-1}$ .                                                                                                                  |     |
| $\overline{x}_{\rm HI,\star}$ Mean neutral fraction at the redshift when the ratio of $\delta T_{\rm b}$ and density power spectra $\Delta_{\delta T_{\rm b}}^2 / \Delta_{\delta\delta}^2$ at $k = 0.05 \ h \ {\rm Mpc}^{-1}$ gets the maxim | ıa. |
| $\alpha_A$ Power-law index on $\overline{x}_{\rm HI}$ which accounts for the change of $\Delta_{\delta T_{\rm b}}^2 / \Delta_{\delta\delta}^2$ as a function of $\overline{x}_{\rm HI}$ at $k = 0.05 \ h \ {\rm Mpc}^{-1}$ .                 |     |
| $\gamma_c$ Account the change in scale-dependence of $\Delta_{\delta T_b}^2 / \Delta_{\delta \delta}^2$ with $\overline{x}_{\rm HI}$ .                                                                                                       |     |
| $\gamma_0$ Account for the all-scale feature of $\Delta_{\delta T_{\rm b}}^2 / \Delta_{\delta \delta}^2$ in addition to small-scale feature $1/(1 + (k/0.3)^2)$ at stages with $\overline{x}_{\rm HI} \to 0$ .                               |     |

### An alternative approach to probe the EoR IGM







Ghara+ in Prep.



**Ghara et al (in preparation)** 

LOFAR upcoming upper limits of EoR 21-cm power spectrum

# Summary

- > 21-cm signal observations is a promising probe of the first billion years of our Universe.
- > Observations with LOFAR/HERA/MWA/.. –towards a detection!.
- Inference: sources properties + IGM properties.
- Current Interferometric upper limits on the 21-cm power spectrum started ruling out scenarios of EoR.
- > IGM based theory of 21-cm signal power spectrum?
- > SKA+... (the next decade) exciting time ahead!