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Two important line of sight (LoS) effects

• Redshift space distortion (RSD)
• Lightcone effect
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Redshift-space distance 𝒔 can be calculated and comes out as

𝒔 = 𝒓 +
𝒗𝑝. 𝒏

𝑎𝐻 𝑎
Where, 𝒗𝑝 is the peculiar velocity and 𝒏 is the line of sight direction, 𝑎 is the scale factor and 𝐻(𝑎)

is the Hubble parameter 

Redshift Space Distortion (RSD)
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Redshift Space Distortion (RSD)
Redshift-space distance 𝒔 can be calculated and comes out as

𝒔 = 𝒓 +
𝒗𝑝. 𝒏

𝑎𝐻 𝑎
Where, 𝒗𝑝 is the peculiar velocity and 𝒏 is the line of sight direction, 𝑎 is the scale factor and 𝐻(𝑎)

is the Hubble parameter 
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Redshift-space distance 𝒔 can be calculated and comes out as

𝒔 = 𝒓 +
𝒗𝑝. 𝒏

𝑎𝐻 𝑎
Where, 𝒗𝑝 is the peculiar velocity and 𝒏 is the line of sight direction, 𝑎 is the scale factor and 𝐻(𝑎)

is the Hubble parameter 

Redshift Space Distortion (RSD)
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Lightcone effect

𝑐𝜂

𝒓

observer

𝑐𝜂𝑛

𝑐𝜂𝑓

𝒓𝒇𝒓𝒏

𝑧 = 0

𝑧 = 7

𝑧 = 8

• It is the fact that our view of the 
universe is restricted through a 
backward light-cone which can 
be written as

𝑟 = 𝑐(𝜂0 − 𝜂)

• Lightcone effect is significant during 
EoR as mean neutral hydrogen 
fraction ҧ𝑥HI changes rapidly during 
this epoch.

Epoch at 

the source

Present 

epoch

Comoving

distance



Epoch of Reionization (EoR)

• A simulated box of comoving size 286.7 𝑀𝑝𝑐 3, centered around redshift 𝑧𝑐 =
7.46 extends from 𝑧 = 7.03 to 7.91 and the 𝑥HI changes from 0.16 to 0.49 
respectively. 

• Neutral fraction, statistical properties of HI fluctuations changes substantially in 
the redshift range

• A simulated cube that captures redshift evolution of the signal termed as ‘light 
cone’ simulation.
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Simulating the EoR (Coeval Box/CB) 

Dark matter distribution 

using N-body code

Finding dark matter 

halos (FoF)

Illuminating 

dark matter 

halos

Reionization simulation 

(ReionYuga)

Comparing 

ionizing photon 

vs HI density on 

grid positions 

Simulating the 

21-cm signal

First step Second step (slowest)

Third step

• Particle-mesh N-body: Dark matter only 

simulation, box size is limited by the RAM.

• FoF: Take longest time to run. 

• ReionYuga: Closely follows the excursion 

set formalism of  Choudhury et al. (2009)
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Simulating the EoR lightcone

…

𝜂1 𝜂2 𝜂3 𝜂𝑁CB

𝑧1 𝑧𝑁CB
𝑧3𝑧2

𝜂1 𝜂2 𝜂3 𝜂𝑁CB

𝑧1 𝑧2 𝑧𝑁CB𝑧3

Lightcone box

Coeval snapshots

LoS
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Interpolation

𝑧1 𝑧2 𝑧3 … 𝑧𝑁CB

…

𝑧1
1 𝑧1

2 … 𝑧1
𝑚 𝑧2

1 𝑧2
2 … 𝑧2

𝑚

…

Simulated snapshots

Intermediate 
redshifts

S. Pramanick et al. (2023)

https://arxiv.org/abs/2304.14171v1
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𝑧𝑖 𝑧𝑖
𝑗

𝑧𝑖+1

𝑧𝑖+1 − 𝑧𝑖
𝑗

𝑧𝑖+1 − 𝑧𝑖

𝑧𝑖
𝑗
− 𝑧𝑖

𝑧𝑖+1 − 𝑧𝑖

Interpolation after gridding 

Interpolating Matter and Halo fields

S. Pramanick et al. (2023)

https://arxiv.org/abs/2304.14171v1
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𝑧1 𝑧2 𝑧3 … 𝑧𝑁𝐶𝐵

…

𝑧1
1 𝑧1

2 … 𝑧1
𝑚 𝑧2

1 𝑧2
2 … 𝑧2

𝑚

…

Simulated snapshots

Intermediate 
redshifts

S. Pramanick et al. (2023)

𝑁CB +𝑚 × (𝑁CB − 1)

accurate interpolated

Increased number of snapshots

https://arxiv.org/abs/2304.14171v1
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Simulating the EoR lightcone

…

𝜂1 𝜂2 𝜂3 𝜂𝑁CB

𝑧1 𝑧𝑁CB
𝑧3𝑧2

𝜂1 𝜂2 𝜂3 𝜂𝑁CB

𝑧1 𝑧2 𝑧𝑁CB𝑧3

Lightcone box

Coeval snapshots

LoS



Coeval box Lightcone box
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ҧ𝑥HI = 0.16 ҧ𝑥HI = 0.49

• Central redshift 𝑧𝑐 = 7.46
• Central frequency 𝜈𝑐 = 167.9 MHz
• Central commoving distance rc =

8986.4 Mpc
• Bandwidth = 17.3 MHz
• Box size = 286.7 Mpc 3



3D Power spectrum
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7.

• 3D spherically averaged power spectrum is defined as:
𝑃 𝒌 = 𝑉−1 < ෪𝑇𝑏 𝒌 ෪𝑇𝑏 −𝒌 >

• It assumes statistical homogeneity and imposes periodicity on the signal which 
cannot be justified in the presence of LC effect (Trott 2016).

• In contrast Multifrequency Angular Power Spectrum (MAPS) does not have any 
such intrinsic assumptions (Mondal et al. 2018).

𝑇𝑏(𝑟, 𝑧)
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• MAPS is defined as

𝐶ℓ 𝜈1, 𝜈2 = 𝐶2𝜋𝑈 𝜈1, 𝜈2 =
Ω−1 < ෨𝑇𝑏2(𝑼, 𝜈) ෨𝑇𝑏2(−𝑼, 𝜈) >

• Ω is solid angle with respect to 
the observer

Multifrequency Angular Power Spectrum 
(MAPS)



20

• Diagonal elements of 𝒞ℓ(𝜈1, 𝜈2) shows systematic increase with redshift for LC 
simulation, where 𝑥HI also increase with 𝑧.

• Similar behavior is absent in coeval simulation, where ҧ𝑥HI remains constant. 

• We can assume the evolution of 𝒞ℓ(𝜈1, 𝜈2) along the LoS is arising entirely due 
to the evolution of ҧ𝑥HI.

• The homogeneous and isotropic statistical fluctuations can be quantified using 
power spectrum.

𝒞ℓ 𝜈, 𝜈 :
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𝐶ℓ 𝜈1, 𝜈2 = ҧ𝑥HI 𝜈1 ҧ𝑥HI 𝜈2 𝐶ℓ
𝐸 𝜈1, 𝜈2

non ergodic ergodic

• The ergodic part can be modeled using monopole 
𝑃0(𝑘) and quadrupole 𝑃2(𝑘) moments of power 
spectrum

• The non ergodic part can be modeled by modeling ҧ𝑥HI.

The model
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• We model ҧ𝑥HI using a second order 
polynomial 

ҧ𝑥HI = 𝑎0 + 𝑎1
𝜈 − 𝜈𝑐
𝐵

+ 𝑎2
𝜈 − 𝜈𝑐
𝐵

2

Where, 𝐵 is the bandwidth of the      
observation.

𝑎0 = 0.5, 𝑎1 = 0.3, 𝑎2 = −0.05

𝜈𝑐 = 157.62 MHz

Non ergodic part: ҧ𝑥HI 𝜈1 ҧ𝑥HI 𝜈2



• In the presence of RSD power spectrum has multipole contributions, see eg.   
[S. Majumdar et al. (2013)]

𝑃 𝑘, 𝜇 = ෍

𝑙=even

℘𝑙 𝜇 𝑃𝑙 𝑘

Where 𝜇 =
𝒌.𝒏

𝑘
=

𝑘∥

𝑘
and ℘𝑙 𝜇 are Legendre Polynomials

• Considering up to quadrupole moment

𝑃 𝑘, 𝜇 = 𝑃0 𝑘 +
1

2
3𝜇2 − 1 𝑃2(𝑘)

• Now, the ergodic MAPS can be written as

𝒞ℓ
E Δ𝜈 = 𝑟𝑐

2𝑟𝑐
′𝐵 −1෍

𝑘∥

𝑒𝑖𝑘∥𝑟𝑐
′Δ𝜈 𝑃(𝑘, 𝜇)

𝒞ℓ
E Δ𝜈 =

1

𝑣𝑓𝑎𝑐
෍

𝑘∥

AM(k∥, Δ𝜈) × 𝑃0 𝑘 +
1

2
3𝜇2 − 1 𝑃2 𝑘

Where, 𝑣𝑓𝑎𝑐 = 𝑟𝑐
2𝑟𝑐

′𝐵 and AM(k∥, Δ𝜈) = Fourier coefficients

Ergodic part: 𝐶ℓ
𝐸 𝜈1, 𝜈2
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• We consider binned power spectrum

• These binned 𝑃0 𝑘 , 𝑃2 𝑘 and 𝑎 values are the model 
parameters

• We can find out the maximum likelihood solution of these 
parameters for the data 𝐶ℓ 𝜈1, 𝜈2

• We use Markov Chain Monte Carlo (MCMC) to find the 
maximum likelihood solution

Pipeline
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Validating the method: Ergodic part

• We use 100 realizations of 
ergodic GRFs, simulated 
using known anisotropic PS.

• 𝑃0(𝑘) and 𝑃2(𝑘) are matching 
with input, this validates the 
modeling of ergodic part.

Direct
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Validating the method: Full model



27

Validating the method: Full model
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Results for Lightcone

𝑃
2
(𝑘
)

EP EP
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Results for Lightcone
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• Real observations will have the signature for both RSD and LC effects in 

the 𝐶ℓ 𝜈1, 𝜈2 data. 

• Our model can separate the evolution of ҧ𝑥HI and power spectrum from the 

data.

• Our model can estimate the multipole components of anisotropic power 

spectrum.

• Direct estimation of power spectrum assume statistical homogeneity which 

cannot be justified in the presence of LC effect.

• We can simultaneously determine the reionization history and power 

spectrum multipoles from real data.

Summary
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Thank you

Photo Credit: Ruobing Dong
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Simulating the Light-cone 21-cm signal from EoR

• For the 21-cm radiation originated from the point 𝒏𝑟, the cosmological expansion and 

the radial component of HI peculiar velocity 𝒏 . 𝒗 (𝒏𝑟, 𝜂) together determine the 

frequency 𝜈 at which the signal is observed, and we have 

𝜈 = 𝑎 𝜂 1 − 𝒏 .
𝒗 𝒏𝑟, 𝜂

𝑐
× 𝜈𝑒

• Assuming that spin temperature is much greater than the background CMB 

temperature, i.e 𝑇𝑠 ≫ 𝑇𝛾, the HI 21-cm brightness temperature can be expressed as

𝑇𝑏 𝒏, 𝜈 = 𝑇0
𝜌𝐻𝐼
𝜌𝐻

𝐻0𝜈𝑒
𝑐

𝜕𝑟

𝜕𝜈

Where, 𝑇0 = 4.0 𝑚𝐾
Ω𝑏ℎ

2

0.02

0.7

ℎ

• The comoving HI density can be obtained by assigning the HI mass in the particles to a 

uniform rectangular grid in comoving space 𝜌𝐻𝐼 = Δ𝑟 −3σ𝑚 𝑀𝐻𝐼 𝑚 where Δ𝑟 3 is 

the volume of each grid cell

• Here, we use a uniform grid in solid angle (ΔΩ) and frequency (Δ𝜈) to define a 

modified density 

𝜌𝐻𝐼
′ = ΔΩ Δ𝜈 −1

𝐻0𝜈𝑒
𝑐

෍

𝑚

𝑀𝐻𝐼 𝑚

𝑟𝑚
2

• Then we can calculate the brightness temperature using 𝑇𝑏 𝒏, 𝜈 = 𝑇0
𝜌𝐻𝐼
′

𝜌𝐻



Steps of Particle mesh N-body Code
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• Grid = 4096

• Grid spacing = 70 Kpc

• Number of particles = 8.58 × 109

• Box size = 286.7 Mpc 3



Steps of FoF halo finder

• DM are represented by discrete particles of mass = 1.09 ×
108𝑀𝑠𝑢𝑛

• Group of DM particles (gravitationally bound within close vicinity) 
forms halo

• We look for such group of DM particles within N-body outputs 
using Friends-of-Friends (FoF) algorithm

• We call a particle friend of another particle if they are within a 
certain distance which is Fixed linking length 𝐿𝑓𝑜𝑓 = 0.2 × Grid 

separation = 14 Kpc
• We call a grop halo if it contains more than a minimum number of 

DM particles 𝑀𝑚𝑖𝑛 (Which is a parameter of the EoR model) 

35



Simulating EoR 21-cm signal

• From the N-body simulation we have DM density field, we assume 
that baryon will follow DM with some bias, these creates the neutral 
hydrogen (HI) field.

• From FoF we have dark matter halo locations and their masses.
• We illuminate those DM halo in proportion to their mass.
• So in the DM halo locations we have High photon number density 

(𝑁𝛾), then we smooth them using convolution with spherical tophat

function.
• The smoothing radius vary from 𝑅𝑚𝑖𝑛 = 𝑔𝑟𝑖𝑑 𝑠𝑖𝑧𝑒 = 0.7 Mpc to 

𝑅𝑚𝑓𝑝

• 𝑅𝑚𝑓𝑝 is the mean free path of the ionizing photon through IGM.

• We then compare the photon number (𝑁𝛾) and neutral hydrogen 

number (𝑁𝐻) on a grid. 
• A grid is fully ionized (𝑥𝐻𝐼𝐼 = 1) is 𝑁𝛾 > 𝑁𝐻

• If 𝑁𝛾 < 𝑁𝐻 then 𝑥𝐻𝐼𝐼 =
𝑁𝛾

𝑁𝐻

• Main observable of EoR is the differential brightness temperature, 
which can be calculated using (Bharadwaj & Ali 2005)

𝛿𝑇𝑏 𝒙 = 27 𝑥𝐻𝐼 𝑧, 𝒙 1 + 𝛿𝐵 𝑧, 𝒙
𝐻

𝑑𝑣𝑟
𝑑𝑟

+𝐻

Ω𝐵ℎ
2

0.023

0.15

Ω𝑚ℎ2
1 + 𝑧

10

1
2

1 −
𝑇𝛾 𝑧

𝑇𝑆 𝑧, 𝒙
𝑚𝐾
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• In the sky we can only observe the angular position (𝜽) of a source. 

• If the source emits a known emission line (like 21-cm line from neutral H) then from 

the spectral-shift of that line one can calculate its redshift (𝑧 =
𝑣𝑒𝑚

𝑣𝑜𝑏𝑠
− 1).

• From 𝑧 we calculate the commoving distance of the source using best available 

cosmological model

𝑟𝑧 = 𝑐 𝑎׬
1 𝑑𝑎

𝑎𝐻 𝑎
where, 𝑎 =

1

1+𝑧

• If the source have some local velocity (peculiar velocity), apart from the Hubble flow 

then that will add-up in the redshift measurement 

• Redshift-space distance 𝒔 can be calculated and comes out as

𝒔 = 𝒓 +
𝒗𝑝. 𝒏

𝑎𝐻 𝑎
Where, 𝒗𝑝 is the peculiar velocity and 𝒏 is the line of sight direction, 𝑎 is the scale factor 

and 𝐻(𝑎) is the Hubble parameter 

Redshift Space Distortion
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Multifrequency Angular Power Spectrum (MAPS)

• Here we decompose brightness temperature fluctuations 𝛿𝑇𝑏(ෝ𝒏, 𝜈) in terms of 

spherical harmonics 𝑌ℓ
𝑚(ෝ𝒏) using

𝛿𝑇𝑏 ෝ𝒏, 𝜈 =෍

ℓ,𝑚

𝑎ℓ𝑚 𝜈 𝑌ℓ
𝑚(ෝ𝒏)

• And define MAPS as

𝐶ℓ 𝜈1, 𝜈2 =< 𝑎ℓ𝑚 𝜈1 𝑎ℓ𝑚
∗ 𝜈2 >

• In this work, it suffices to adopt the flat-sky approximation where we decompose 

the 𝜃 dependence of 𝛿𝑇𝑏(𝜃, 𝜈) into 2D Fourier modes ෨𝑇𝑏2(𝑼, 𝜈). Here, 𝑼 is the 

Fourier conjugate of 𝜃, and we define the MAPS using

𝐶ℓ 𝜈1, 𝜈2 = 𝐶2𝜋𝑈 𝜈1, 𝜈2 = Ω−1 < ෨𝑇𝑏2(𝑼, 𝜈) ෨𝑇𝑏2(−𝑼, 𝜈) >

Where Ω is the solid angle subtended by the simulation at the observer.
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