Advanced

$21-\mathrm{cm}$ cosmology Workshop (2023)

NISER Bhubaneswar, 19th December, 2023

A method to simultaneously determine the reionization history and power spectrum
by

Suman Pramanick

In collaboration with
Somnath Bharadwaj,
Rajesh Mondal \&
Asif Elahi

Cosmic History

GMRT

HERA

MWA

PAPER

SKA

Two important line of sight (LoS) effects

- Redshift space distortion (RSD)
- Lightcone effect

Redshift Space Distortion (RSD)

Redshift-space distance \boldsymbol{s} can be calculated and comes out as

$$
\boldsymbol{s}=\boldsymbol{r}+\frac{\boldsymbol{v}_{p} \cdot \boldsymbol{n}}{a H(a)}
$$

Where, \boldsymbol{v}_{p} is the peculiar velocity and \boldsymbol{n} is the line of sight direction, a is the scale factor and $H(a)$ is the Hubble parameter

Redshift Space Distortion (RSD)

Redshift-space distance \boldsymbol{s} can be calculated and comes out as

$$
\boldsymbol{s}=\boldsymbol{r}+\frac{\boldsymbol{v}_{p} \cdot \boldsymbol{n}}{a H(a)}
$$

Where, \boldsymbol{v}_{p} is the peculiar velocity and \boldsymbol{n} is the line of sight direction, a is the scale factor and $H(a)$ is the Hubble parameter

Redshift Space Distortion (RSD)

Redshift-space distance \boldsymbol{s} can be calculated and comes out as

$$
\boldsymbol{s}=\boldsymbol{r}+\frac{\boldsymbol{v}_{p} \cdot \boldsymbol{n}}{a H(a)}
$$

Where, \boldsymbol{v}_{p} is the peculiar velocity and \boldsymbol{n} is the line of sight direction, a is the scale factor and $H(a)$ is the Hubble parameter

Lightcone effect

- It is the fact that our view of the

- Lightcone effect is significant during EoR as mean neutral hydrogen fraction \bar{x}_{HI} changes rapidly during this epoch.
 universe is restricted through a backward light-cone which can be written as

Epoch of Reionization (EoR)

- A simulated box of comoving size (286.7 Mpc$)^{3}$, centered around redshift $z_{c}=$ 7.46 extends from $z=7.03$ to 7.91 and the x_{HI} changes from 0.16 to 0.49 respectively.
- Neutral fraction, statistical properties of HI fluctuations changes substantially in the redshift range
- A simulated cube that captures redshift evolution of the signal termed as 'light cone' simulation.

Simulating the EoR (Coeval Box/CB)

Dark matter distribution using N-body code

First step

Finding dark matter halos (FoF)

- Particle-mesh N-body: Dark matter only simulation, box size is limited by the RAM.
- FoF: Take longest time to run.
- ReionYuga: Closely follows the excursion set formalism of Choudhury et al. (2009)

Reionization simulation
(ReionYuga)

Simulating the EoR lightcone

- R.M. Thomas, S. Zaroubi, B. Ciardi, A.H. Pawlik, P. Labropoulos, V. Jeli'c et al., Fast large-scale reionization simulations, Monthly Notices of the Royal Astronomical Society 393 (2009) 32.
- K.K. Datta, G. Mellema, Y. Mao, I.T. Iliev, P.R. Shapiro and K. Ahn, Light-cone effect on the reionization $21-\mathrm{cm}$ power spectrum, Monthly Notices of the Royal Astronomical Society 424 (2012) 1877.
- K. Zawada, B. Semelin, P. Vonlanthen, S. Baek and Y. Revaz, Light-cone anisotropy in the 21 cm signal from the epoch of reionization, Monthly Notices of the Royal Astronomical Society 439 (2014) 1615.
- K.K. Datta, H. Jensen, S. Majumdar, G. Mellema, I.T. Iliev, Y. Mao et al., Light cone effect on the reionization $21-\mathrm{cm}$ signal-ii. evolution, anisotropies and observational implications, Monthly Notices of the Royal Astronomical Society 442 (2014) 1491.
- X. Zhao, Y. Mao, C. Cheng and B.D. Wandelt, Simulation-based inference of reionization parameters from 3d tomographic 21 cm light-cone images, The Astrophysical Journal 926 (2022) 151.

Interpolation

Simulated snapshots

S. Pramanick et al. (2023)

Interpolating Matter and Halo fields

Interpolation after gridding

Increased number of snapshots

Simulated snapshots

Simulating the EoR lightcone

Coeval box
Lightcone box

- Central redshift $z_{c}=7.46$
- Central frequency $v_{c}=167.9 \mathrm{MHz}$
- Central commoving distance $\mathrm{r}_{\mathrm{C}}=$ 8986.4 Mpc
- Bandwidth = 17.3 MHz
- Box size $=(286.7 \mathrm{Mpc})^{3}$

3D Power spectrum

- 3D spherically averaged power spectrum is defined as:

$$
P(\boldsymbol{k})=V^{-1}<\widetilde{T_{b}}(\boldsymbol{k}) \widetilde{T_{b}}(-\boldsymbol{k})>
$$

- It assumes statistical homogeneity and imposes periodicity on the signal which cannot be justified in the presence of LC effect (Trott 2016).
- In contrast Multifrequency Angular Power Spectrum (MAPS) does not have any such intrinsic assumptions (Mondal et al. 2018).

Multifrequency Angular Power Spectrum (MAPS)

- MAPS is defined as

$$
\begin{gathered}
C_{\ell}\left(v_{1}, v_{2}\right)=C_{2 \pi U}\left(v_{1}, v_{2}\right)= \\
\Omega^{-1}<\widetilde{T}_{b 2}(\boldsymbol{U}, v) \widetilde{T}_{b 2}(-\boldsymbol{U}, v)>
\end{gathered}
$$

- Ω is solid angle with respect to the observer

$\mathcal{C}_{\ell}(\nu, v):$

- Diagonal elements of $\mathcal{C}_{\ell}\left(v_{1}, v_{2}\right)$ shows systematic increase with redshift for LC simulation, where x_{HI} also increase with z.
- Similar behavior is absent in coeval simulation, where \bar{x}_{HI} remains constant.
- We can assume the evolution of $\mathcal{C}_{\ell}\left(v_{1}, v_{2}\right)$ along the LoS is arising entirely due to the evolution of \bar{x}_{HI}.
- The homogeneous and isotropic statistical fluctuations can be quantified using power spectrum.

The model

$$
C_{\ell}\left(v_{1}, v_{2}\right)=\underbrace{\bar{x}_{\mathrm{HI}}\left(v_{1}\right) \bar{x}_{\mathrm{HI}}\left(v_{2}\right)}_{\text {non ergodic }} \underbrace{C_{\ell}^{E}\left(v_{1}, v_{2}\right)}_{\text {ergodic }}
$$

- The ergodic part can be modeled using monopole $P_{0}(k)$ and quadrupole $P_{2}(k)$ moments of power spectrum
- The non ergodic part can be modeled by modeling \bar{x}_{HI}.

Non ergodic part: $\bar{x}_{\mathrm{HI}}\left(v_{1}\right) \bar{x}_{\mathrm{HI}}\left(v_{2}\right)$

- We model \bar{x}_{HI} using a second order polynomial

$$
\bar{x}_{\mathrm{HI}}=a_{0}+a_{1} \frac{v-v_{c}}{B}+a_{2}\left(\frac{v-v_{c}}{B}\right)^{2}
$$

Where, B is the bandwidth of the observation.

Ergodic part: $C_{\ell}^{E}\left(v_{1}, v_{2}\right)$

- In the presence of RSD power spectrum has multipole contributions, see eg. [S. Majumdar et al. (2013)]

$$
P(k, \mu)=\sum_{l=\text { even }} \wp_{l}(\mu) P_{l}(k)
$$

Where $\mu=\frac{k \cdot n}{k}=\frac{k_{\|}}{k}$ and $\wp_{l}(\mu)$ are Legendre Polynomials

- Considering up to quadrupole moment

$$
P(k, \mu)=P_{0}(k)+\frac{1}{2}\left(3 \mu^{2}-1\right) P_{2}(k)
$$

- Now, the ergodic MAPS can be written as

$$
\begin{gathered}
\mathcal{C}_{\ell}^{\mathrm{E}}(\Delta v)=\left(r_{c}^{2} r_{c}^{\prime} B\right)^{-1} \sum_{k_{\|}} e^{i k_{\|} r_{c}^{\prime} \Delta v} P(k, \mu) \\
\mathcal{C}_{\ell}^{\mathrm{E}}(\Delta v)=\frac{1}{v f a c} \sum_{k_{\|}} \operatorname{AM}\left(\mathrm{k}_{\|}, \Delta v\right) \times\left[P_{0}(k)+\frac{1}{2}\left(3 \mu^{2}-1\right) P_{2}(k)\right]
\end{gathered}
$$

Where, $v f a c=r_{c}^{2} r_{c}^{\prime} B$ and $A M\left(\mathrm{k}_{\|}, \Delta v\right)=$ Fourier coefficients

Pipeline

- We consider binned power spectrum
- These binned $P_{0}(k), P_{2}(k)$ and a values are the model parameters
- We can find out the maximum likelihood solution of these parameters for the data $C_{\ell}\left(v_{1}, v_{2}\right)$
- We use Markov Chain Monte Carlo (MCMC) to find the maximum likelihood solution

Validating the method: Ergodic part

- We use 100 realizations of ergodic GRFs, simulated using known anisotropic PS.
- $P_{0}(k)$ and $P_{2}(k)$ are matching with input, this validates the modeling of ergodic part.

Validating the method: Full model

Validating the method: Full model

Results for Lightcone

Results for Lightcone

Summary

- Real observations will have the signature for both RSD and LC effects in the $C_{\ell}\left(v_{1}, v_{2}\right)$ data.
- Our model can separate the evolution of \bar{x}_{HI} and power spectrum from the data.
- Our model can estimate the multipole components of anisotropic power spectrum.
- Direct estimation of power spectrum assume statistical homogeneity which cannot be justified in the presence of LC effect.
- We can simultaneously determine the reionization history and power spectrum multipoles from real data.

Thank you

Backup slides

Simulating the Light-cone 21-cm signal from EoR

- For the $21-\mathrm{cm}$ radiation originated from the point $\boldsymbol{n} r$, the cosmological expansion and the radial component of HI peculiar velocity $\boldsymbol{n} . \boldsymbol{v}(\boldsymbol{n} r, \eta)$ together determine the frequency v at which the signal is observed, and we have

$$
v=a(\eta)\left[1-\boldsymbol{n} \cdot \frac{v(\boldsymbol{n} r, \eta)}{c}\right] \times v_{e}
$$

- Assuming that spin temperature is much greater than the background CMB temperature, i.e $T_{s} \gg T_{\gamma}$, the $\mathrm{HI} 21-\mathrm{cm}$ brightness temperature can be expressed as

$$
T_{b}(\boldsymbol{n}, v)=T_{0} \frac{\rho_{H I}}{\rho_{H}}\left(\frac{H_{0} v_{e}}{c}\right)\left|\frac{\partial r}{\partial v}\right|
$$

Where, $T_{0}=4.0 \mathrm{mK}\left(\frac{\Omega_{b} h^{2}}{0.02}\right)\left(\frac{0.7}{h}\right)$

- The comoving HI density can be obtained by assigning the HI mass in the particles to a uniform rectangular grid in comoving space $\rho_{H I}=(\Delta r)^{-3} \sum_{m}\left[M_{H I}\right]_{m}$ where $(\Delta r)^{3}$ is the volume of each grid cell
- Here, we use a uniform grid in solid angle $(\Delta \Omega)$ and frequency $(\Delta \nu)$ to define a modified density

$$
\rho_{H I}^{\prime}=(\Delta \Omega \Delta v)^{-1}\left(\frac{H_{0} v_{e}}{c}\right) \sum_{m} \frac{\left[M_{H I}\right]_{m}}{r_{m}^{2}}
$$

- Then we can calculate the brightness temperature using $T_{b}(\boldsymbol{n}, v)=T_{0} \frac{\rho_{H I}^{\prime}}{\rho_{H}}$

Steps of Particle mesh N-body Code

Steps of FoF halo finder

- DM are represented by discrete particles of mass $=1.09 \times$ $10^{8} M_{\text {sun }}$
- Group of DM particles (gravitationally bound within close vicinity) forms halo
- We look for such group of DM particles within N-body outputs using Friends-of-Friends (FoF) algorithm
- We call a particle friend of another particle if they are within a certain distance which is Fixed linking length $L_{f o f}=0.2 \times$ Grid
 separation = 14 Kpc
- We call a grop halo if it contains more than a minimum number of DM particles $M_{\min }$ (Which is a parameter of the EoR model)

Simulating EoR 21-cm signal

- From the N -body simulation we have DM density field, we assume that baryon will follow DM with some bias, these creates the neutral hydrogen (HI) field.
- From FoF we have dark matter halo locations and their masses.
- We illuminate those DM halo in proportion to their mass.
- So in the DM halo locations we have High photon number density (N_{γ}), then we smooth them using convolution with spherical tophat function.
- The smoothing radius vary from $R_{\text {min }}=$ grid size $=0.7 \mathrm{Mpc}$ to $R_{m f p}$
- $R_{m f p}$ is the mean free path of the ionizing photon through IGM.
- We then compare the photon number $\left(N_{\gamma}\right)$ and neutral hydrogen number $\left(N_{H}\right)$ on a grid.
- A grid is fully ionized ($x_{H I I}=1$) is $N_{\gamma}>N_{H}$
- If $N_{\gamma}<N_{H}$ then $x_{H I I}=\frac{N_{\gamma}}{N_{H}}$
- Main observable of EoR is the differential brightness temperature, which can be calculated using (Bharadwaj \& Ali 2005)

$\delta T_{b}(x)=27 x_{H I}(z, x)\left[1+\delta_{B}(z, x)\right]\left(\frac{H}{\frac{d v_{r}}{d r}+H}\right)\left(\frac{\Omega_{B} h^{2}}{0.023}\right)\left(\frac{0.15}{\Omega_{m} h^{2}} \frac{1+z}{10}\right)^{\frac{1}{2}}\left[1-\frac{T_{\gamma}(z)}{T_{S}(z, x)}\right] m K$

Redshift Space Distortion

- In the sky we can only observe the angular position $(\boldsymbol{\theta})$ of a source.
- If the source emits a known emission line (like $21-\mathrm{cm}$ line from neutral H) then from the spectral-shift of that line one can calculate its redshift $\left(z=\frac{v_{e m}}{v_{o b s}}-1\right)$.
- From z we calculate the commoving distance of the source using best available cosmological model

$$
r_{z}=c \int_{a}^{1} \frac{d a}{a H(a)} \text { where, } a=\frac{1}{1+z}
$$

- If the source have some local velocity (peculiar velocity), apart from the Hubble flow then that will add-up in the redshift measurement
- Redshift-space distance \boldsymbol{s} can be calculated and comes out as

$$
\boldsymbol{s}=\boldsymbol{r}+\frac{\boldsymbol{v}_{p} \cdot \boldsymbol{n}}{a H(a)}
$$

Where, \boldsymbol{v}_{p} is the peculiar velocity and \boldsymbol{n} is the line of sight direction, a is the scale factor and $H(a)$ is the Hubble parameter

Multifrequency Angular Power Spectrum (MAPS)

- Here we decompose brightness temperature fluctuations $\delta T_{b}(\widehat{\boldsymbol{n}}, v)$ in terms of spherical harmonics $Y_{\ell}^{m}(\widehat{\boldsymbol{n}})$ using

$$
\delta T_{b}(\widehat{\boldsymbol{n}}, v)=\sum_{\ell, m} a_{\ell m}(v) Y_{\ell}^{m}(\widehat{\boldsymbol{n}})
$$

- And define MAPS as

$$
C_{\ell}\left(v_{1}, v_{2}\right)=<a_{\ell m}\left(v_{1}\right) a_{\ell m}^{*}\left(v_{2}\right)>
$$

- In this work, it suffices to adopt the flat-sky approximation where we decompose the θ dependence of $\delta T_{b}(\theta, v)$ into 2 D Fourier modes $\tilde{T}_{b 2}(\boldsymbol{U}, v)$. Here, \boldsymbol{U} is the Fourier conjugate of θ, and we define the MAPS using

$$
C_{\ell}\left(v_{1}, v_{2}\right)=C_{2 \pi U}\left(v_{1}, v_{2}\right)=\Omega^{-1}<\tilde{T}_{b 2}(\boldsymbol{U}, v) \tilde{T}_{b 2}(-\boldsymbol{U}, v)>
$$

Where Ω is the solid angle subtended by the simulation at the observer.

