Rutherford scattering: measuring the scattering rate as a function of the scattering angle and the atomic number

Objects of the experiment

To record the direct counting rate N_{d} of α particles scattered by a gold foil as function of the angle θ.

- To determine the corrected counting rates N with respect to the scattering distribution in space.
- To validate the "Rutherford's scattering formula"

Fig. 1: Scattering of α-particles on a monolayer of atoms.

Principles

If α-particles are allowed to strike a thin gold foil, they are deflected from their path ("scattering"), each by an angle θ. The majority of α-particles is scattered by angles less than 1° (Fig.1).
A few particles, however, show substantially large scattering angles θ, in the extreme case up to 180° ("back scattering"). These initially qualitative observations can only be explained by assuming that the gold atoms have a very small nucleus, containing practically the whole atomic mass, and being positively charged.
On the basis of this idea Rutherford calculated the angular distribution of the scattering rate $N(\theta)$. The scattering rate is the number of particles which are scattered during the time unit in a determined interval $\mathrm{d} \theta$ around an average angle θ. The result of this calculation is "Rutherford's scattering formula":

$$
\begin{equation*}
N(\theta)=N_{0} \cdot C_{F} \cdot d_{F} \frac{Z^{2} \cdot e^{4}}{\left(8 \pi \varepsilon_{0} E_{\alpha}\right)^{2} \cdot \sin ^{4}\left(\frac{\theta}{2}\right)} \tag{I}
\end{equation*}
$$

N_{0} : particle rate in the foil
C_{F} : atomic concentration in the foil
d_{F} : thickness of the foil
Z: nuclear charge number of the scattering material
E_{α} :energy of the α-particles
e : elementary charge $\left(e=1.6021 * 10^{-19} \mathrm{As}\right)$
ε_{0} : dielectric constant ($\left.\varepsilon_{0}=8.8524^{*} 10^{-12} \mathrm{As} / \mathrm{Vm}\right)$

Recording the scattering rate as function of the angle

In this case we need not care about the proportionality factors in equation (I) which are kept constant in our experiment. The relevant shape of this angular distribution curve is described by the function:
$f(\theta)=\frac{1}{\cdot \sin ^{4}\left(\frac{\theta}{2}\right)}$

Fig. 2: Theoretical slope of the scattering rate according equation (II).

The values of $f(\theta)$ decrease rapidly with increasing scattering angle θ. Hence, in Fig. 2 the graphical representation of $f(\theta)$ is plotted in a logarithmic scale over θ. A singularity spot becomes visible at $\theta=0^{\circ}$. Therefore we will compare measuring results with the theoretical slope only outside of this region, i.e. for values $|\theta|>5^{\circ}$.

As for higher scattering angles θ the counting rates become very small the gate times $t(\theta)$ for determining the counting rate $N(\theta)$ have to be increased with increasing angle θ to obtain an acceptable accuracy. For keeping the total measuring time sustainable the angular range can be restricted to $\mid \theta$ $\mid \leq 30^{\circ}$.

Fig. 3: Experimental setup schematically for the Rutherford Scattering Experiment.

Fig. 4: The scattering chamber
(1) Preparation
(4) Slit
(2) Holder
(5) swivel arm
(3) Gold foil
(6) detector

Because of the very low range of α-particles in the air this experiment must be carried out in a closed chamber under vacuum (Fig. 3). Fig. 4 shows the arrangement of the components on the lid of the scattering chamber. Fig. 5 shows the geometry of the experiment.
The α-particles emitted from the Am-241 preparation fall through a slit aperture of 5 mm width onto the gold foil and leave this gold foil with various scattering angles. The scattered α-particles are identified with a semiconductor detector. By swinging the detector in steps of 5°, for example, the scattering rate can be determined for all scattering angles from 5° to 60°. With the setup we are going to use, the detector is not swung but rather the preparation, slit and gold foil, which are attached on a common swivel arm. The detector is firmly attached to the side wall of the chamber.
The 5 mm wide slit is a good choice for getting acceptable count statistics in reasonable time, but at small angles below 20° the angular precision might be increased by using a 1 mm slit and scaling the results appropriately. On the other hand, this scaling can introduce further errors, so it has not been used in the measurement described later.

Determining the nuclear charge number of aluminium

If we compare the scattering rates between two different foil materials (e.g. Au and Al) at the same angle θ, we can derive from the scattering formula (I):
$\frac{N_{A u}}{N_{A l}}=\frac{c_{A u} d_{A u} Z_{A u}^{2}}{c_{A l} d_{A l} Z_{A l}^{2}}$

Hence the nuclear charge number of aluminium $Z_{A l}$ can be determined by scattering experiments as following:

$$
\begin{equation*}
Z_{A l}=\sqrt{\frac{N_{A l}(\theta) c_{A u} d_{A u} Z_{A u}^{2}}{N_{A u}(\theta) c_{A l} d_{A l}}} \tag{IV}
\end{equation*}
$$

Fig. 5: The scattering geometry:
(1) preparation
(2) collimator slit
(3) gold foil
(4).detector

Apparatus

1 Scattering chamber after Rutherford 55956
1 Aluminium foil in frame .. 55952
1 Vacuum pump S 1.5, 230 V, 50 Hz 37873
1 T-Piece DN 16 KF ... 378005
1 Centering ring (adapter) DN 10/16 KF 378040
1 Centering ring DN 16 KF 378045
2 Clamping ring DN 10/16 KF 378050
1 Air inlet valve with DN 10 KF 378771
1 Small flange DN 16 with hose nozzle 378031
1 Vacuum rubber tubing .. 667186
1 Discriminator preamplifier 559931
1 Counter S .. 575471
1 Plug-in power supply unit 12 V AC 562791
1 Am-241 preparation, 333 kBq 55982
1 HF cable, 25 cm .. 50101
1 Measuring cable BNC / 4-mm 57524

Safety notes

- Never touch the gold or aluminium foil!
- Venting of the chamber after the experiment has to be done very carefully (see operating instructions 559 56, section 3.4), otherwise you may destroy the sensitive gold or aluminium foil.

Setup

Preparing the scattering chamber:

Vent the scattering chamber (when using at first time) and take off the lid (Fig. 4).

Insert the Am-241 preparation into the 4-mm socket of the main swivel arm down to the stop. Place the $5-\mathrm{mm}$ slit aperture and the plastic sheet containing the gold foil on top of one another (with the gold foil between them) and insert them both into the holder so that the slit points towards the preparation. Move the small swivel arm (not used here) close to the chamber's side wall so that the measurements are not disturbed.
Make sure that the detector is fixed on the BNC socket at the inner wall of the chamber with the sides of the silicon chip parallel to the lid, and that the detector's plastic aperture slit is perpendicular to the lid (with the mark at the top). Fit vacuum tubing to the hose nozzle. Close the chamber by placing its lid onto the housing. Ensure the correct positioning by positioning pin in borehole. Then evacuate the chamber. Firmly press lid on, if necessary. While the vacuum builds up, the lid is pressed onto the rubber seal and the deep black stripe where they touch gets two ro three mm wide.
During the measurement, the vacuum pump can either run continuously or the valve of the Rutherford chamber can be closed and the pump switched off. The rubber tubing must be vented through the inlet valve 378771 to avoid oil creeping back into the vacuum.

Preparing the electrical counting components:

Connect the scattering chamber, discriminator preamplifier and counter S as shown in Fig. 3. Set discriminator to zero (turn potentiometer fully counterclockwise).
Take care of connecting the detector with the discriminator preamplifier using the short 25 cm cable.

Adjusting the discriminator level:

The counter S normally starts correct for pulse counting with activated $\mathrm{N}_{\mathrm{A}, \mathrm{E}}$. and gate time set to manual, press start to start counting and $->0<-$ to reset the counter when necessary.
Set up the experiment with the 5 mm slit, the gold foil, preparation and detector, and move the holder to a high angle, 30° for example. Only very few α-particles will reach the detector in this position.

Evacuate the chamber,

The potentiometer sets the discriminator level, a setting of zero (fully counterclockwise) will not discriminate anything, but let every noise signal pass through. The counter will overload instantly and display "----". Increasing the discriminator setting will reduce these noise counts. To find the right position, increase the discriminator level by approximately a quarter turn and reset the counter. By varying the discriminator level in both directions search for the setting where the noise count rate just drops to zero. Note that position.
Now swivel the preparation to 0° position, a lot of alpha radiation will hit the detector. The counter will start to count something between 10 to 100 counts per second. Increase the discriminator level again until the count rate just starts to drop. Note this position too.
The correct position for the discriminator level is midway between both positions, the one where the noise is masked out and the other where the alpha count rate starts to drop.
Test the setting by swiveling the preparation in and out the straight line and observe the counting rates.

Carrying out the experiment

a) Recording scattering rate as function of the angle

- Prepare the counter S for pulse counting by pressing the push button MODE to activate $\mathrm{N}_{\mathrm{A}, \mathrm{E}}$.
- Select gate time $\mathrm{t}(\theta)=100 \mathrm{~s}$ by pressing the toggle button GATE three times
Note: $\mathrm{t}(\theta)=100 \mathrm{~s}$ is useful for small angles, i.e. angle up to $+/ 15^{\circ}$. By pressing GATE + MODE, longer gate times are can be adjusted, i.e. up to 9999 s (MODE upwards, GATE downwards).

Important: During measurements protect the sensitive detector from light (e.g. especially from fluorescent light of ceiling lamps)! If necessary, cover the scattering chamber during measurements with a black cloth.

- Count at least 50 particles $(n(\theta)>50)$ at the angles:
$\theta=+/-5^{\circ},+/-10^{\circ},+/-15^{\circ},+/-20^{\circ},+/-25^{\circ}$ and $+/-30^{\circ}$

Note: It is recommended to measure symmetrically to $\theta=0$ to detect unwanted misalignments in the setup.

- Use gate times $t(\theta)$ as given in the Table 1. Repeat counting several times for all angles (with exception of $+/-5^{\circ}$).
b) Determining the nuclear charge number of aluminium

Carefully vent the chamber, take of the lid and remove the 5 mm slit with the gold foil. Put the 1 mm slit together with the gold foil back into the holder, put the lid on the chamber and evacuate.
Set the swivel arm first to a position of $+15^{\circ}$, count for sufficient time (100 s), then go to -15° and count again.
Carefully vent the chamber, take of the lid and remove the slit with the gold foil. Put the 1 mm slit together with the aluminum foil back into the holder, put the lid on the chamber and evacuate.
Count again at the same postion of $+15^{\circ}$ and -15°, but for a much longer time (1000 s), as the aluminum foil scatters less particles.

Measuring example

Table. 1: Measured values (with gold foil and slit $\mathrm{d}=5 \mathrm{~mm}$):

Angle	Gate time	Pulse counts (single values)	Pulse counts (mean value)	Counting rate (directly)	Counting rate (space corrected)
$\theta \mathrm{in}^{\circ}$	$\mathrm{t}(\theta)$ in s	$\mathrm{n}(\theta)$	$\mathrm{n}_{\mathrm{m}}(\theta)$	$\mathrm{N}_{\mathrm{d}}(\theta)$ in $1 / \mathrm{s}$	$\mathrm{N}(\theta)$ in 1/s
-30	900	$\begin{aligned} & \hline 77 \\ & 99 \\ & 76 \\ & 69 \\ & 81 \end{aligned}$	80,4	0,0893	0,281
-25	600	$\begin{aligned} & 119 \\ & 118 \\ & 150 \\ & 107 \\ & 153 \end{aligned}$	129,4	0,216	0,573
-20	200	$\begin{aligned} & 131 \\ & 114 \\ & 118 \\ & 123 \\ & 131 \end{aligned}$	123,4	0,617	1,33
-15	100	$\begin{aligned} & 255 \\ & 256 \\ & 255 \\ & 298 \\ & 263 \end{aligned}$	265,4	2,65	4,32
-10	100	$\begin{aligned} & 1772 \\ & 1731 \\ & 1790 \\ & 1825 \\ & 1730 \end{aligned}$	1769,6	17,7	19,3
-5	100	4641	4641	$(46,4)$	
+5	100	5608	5608	$(56,1)$	
+10	100	$\begin{aligned} & 4047 \\ & 3983 \\ & 4146 \\ & 4123 \\ & 4107 \end{aligned}$	4081,2	40,8	44,5
+15	100	$\begin{array}{r} 1000 \\ 1036 \\ 968 \\ 997 \\ 1009 \end{array}$	1002,0	10,0	16,3
+20	200	$\begin{aligned} & 278 \\ & 273 \\ & 276 \\ & 284 \\ & 289 \end{aligned}$	280,0	1,40	3,01
+25	600	$\begin{aligned} & 263 \\ & 252 \\ & 274 \\ & 250 \\ & 269 \end{aligned}$	261,6	0,436	1,16
+30	900	$\begin{aligned} & 147 \\ & 161 \\ & 148 \\ & 158 \\ & 155 \end{aligned}$	153,8	0,171	0,537

Evaluation and results

a) Recording the scattering rate as function of the angle

After recording the pulse counts $n(\theta)$ the mean values $n_{m}(\theta)$ can be determined. Using the mean values $\mathrm{n}_{\mathrm{m}}(\theta)$ the scattering rates $\mathrm{N}_{\mathrm{d}}(\theta)$ are calculated by:
$N_{\mathrm{d}}(\theta)=\frac{\mathrm{n}_{\mathrm{m}}(\theta)}{\mathrm{t}(\theta)}$
These measuring results $\mathrm{N}_{\mathrm{d}}(\theta)$ are typical for a plane scattering geometry which is given by the transparent construction of the chamber used in this experiment.
The theoretical function (according to Rutherford's formula), however, is related to a three-dimensional geometry. The relation between these different aspects can considered by the following concept (Fig. 6):
Each plane angle θ corresponds in space to a cone with an aperture of $2 . \theta$ (produced by rotation of the plane structure around the incident beam axis). In the same way the plane angular differential $d \theta$ corresponds in three dimensions to a spatial angular differential $\mathrm{d} \Omega$ given by:
$\mathrm{d} \Omega=2 \cdot \pi \cdot \sin (\theta) d \theta$

This geometrical corrections allows to derive a relation between the plane scattering rate $\mathrm{N} \cdot \mathrm{d}(\theta)$ and the spatial scattering rate $N(\theta)$:
$N(\theta)=2 \cdot \pi \cdot \sin (\theta) \cdot N d(\theta)$

Finally, the corresponding spatial values $\mathrm{N}(\theta)$ are calculated (Table. 1) and the space corrected values plotted in a diagram (Fig. 7).

The measuring value pairs $\{\theta / \mathrm{N}(\theta)\}$ can be compared with the shape of the theoretical curve of equation (II):
$f(\theta)=\frac{A}{\cdot \sin ^{4}\left(\frac{\theta-B}{2}\right)}$
The proportionality factor A represents a vertical shift (at logarithmic scale). The coefficient B is representing a small displacement along the horizontal angular scale.

Note: A small inaccuracy of the collimator-slit adjustment or non centric distribution of the radiation, coming from the preparation in the holder, may cause a shift of the curve along the horizontal axis (angle shift $<3^{\circ}$).
Due to such effects it is useful to record scattering rates as well in the positive as in the negative angular range, to get information of both branches with respect to an accurate determination of the symmetry-axis displacement.

Fig. 6: The α-particles are scattered into the angular region $\vartheta+\mathrm{d} \vartheta$.

Fig. 7: Results (circles) with a shifted fitting curve (grey) according to equation (VIII) for $A=0.00171$ and $B=1.04$.
b) Determining the nuclear charge number of aluminium

Typical results for the counting rates at gold and aluminium are ($15^{\circ}, 1 \mathrm{~mm}$ slit):
$\mathrm{N}_{\mathrm{Au}}\left(15^{\circ}\right)=0,301 \mathrm{1} / \mathrm{s}$
$\mathrm{N}_{\mathrm{Al}}\left(15^{\circ}\right)=0,0291 / \mathrm{s}$

With $\mathrm{d}_{\mathrm{Au}}=2 \mu \mathrm{~m}, \mathrm{~d}_{\mathrm{Al}}=8 \mu \mathrm{~m}, \mathrm{C}_{\mathrm{Au}} \approx \mathrm{C}_{\mathrm{Al}}$ and $\mathrm{Z}_{\mathrm{Au}}=79$ we obtain with equation (IV):
$Z_{A I}=12,3$ (exact value: $Z_{A I}=13$).

